Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 24(2): e2300282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37580865

RESUMO

Antibacterial hydrogel has emerged as an excellent candidate for wound dressing with the ability to eliminate infection and promote wound healing. Herein, a dynamic hydrogel is developed by Schiff base reaction of mixed charged polypeptides and oxidized dextran (ODex). Specifically, biodegradable polypeptides of 1-(propylthio)acetic acid-3-butylimidazole-modified poly(L-lysine) (PLL-PBIM) and adipate dihydrazide-modified poly(L-glutamic acid) (PLG-ADH) are achieved with tunable substitution and charge. By mixing with ODex, charged polypeptides of PLL-PBIM and PLG-ADH led to an injectable and self-healing hydrogel in seconds. The injectable and self-healing performances of the hydrogels are ascribed to the reversible imine and hydrazone bonds formed between polypeptides and ODex. The positively charged hydrogels exhibited over 95% antibacterial activity against E. coli and S. aureus. An optimized balancing of PLG-ADH and PLL-PBIM significantly reduced the hemolysis rate and cytotoxicity of hydrogels. Therefore, the dynamic hydrogel with excellent biocompatibility and inherently antibacterial ability can have potential application for wound dressing.


Assuntos
Adesivos , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Peptídeos
2.
ACS Nano ; 15(4): 6352-6368, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33723994

RESUMO

Excessive scar formation has adverse physiological and psychological effects on patients; therefore, a therapeutic strategy for rapid wound healing and reduced scar formation is urgently needed. Herein, bilayered thiolated alginate/PEG diacrylate (BSSPD) hydrogels were fabricated for sequential release of small extracellular vesicles (sEVs), which acted in different wound healing phases, to achieve rapid and scarless wound healing. The sEVs secreted by bone marrow derived mesenchymal stem cells (B-sEVs) were released from the lower layer of the hydrogels to promote angiogenesis and collagen deposition by accelerating fibroblast and endothelial cell proliferation and migration during the early inflammation and proliferation phases, while sEVs secreted by miR-29b-3p-enriched bone marrow derived mesenchymal stem cells were released from the upper layer of the hydrogels and suppressed excessive capillary proliferation and collagen deposition during the late proliferation and maturation phases. In a full-thickness skin defect model of rats and rabbit ears, the wound repair rate, angiogenesis, and collagen deposition were evaluated at different time points after treatment with BSSPD loaded with B-sEVs. Interestingly, during the end of the maturation phase in the in vivo model, tissues in the groups treated with BSSPD loaded with sEVs for sequential release (SR-sEVs@BSSPD) exhibited a more uniform vascular structure distribution, more regular collagen arrangement, and lower volume of hyperplastic scar tissue than tissues in the other groups. Hence, SR-sEVs@BSSPD based on skin repair phases was successfully designed and has considerable potential as a cell-free therapy for scarless wound healing.


Assuntos
Alginatos , Vesículas Extracelulares , Animais , Humanos , Hidrogéis , Polietilenoglicóis , Coelhos , Ratos , Pele , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...